85 research outputs found

    A decomposition-based multiobjective evolutionary algorithm with angle-based adaptive penalty

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.A multiobjective evolutionary algorithm based on decomposition (MOEA/D) decomposes a multiobjective optimization problem (MOP) into a number of scalar optimization subproblems and optimizes them in a collaborative manner. In MOEA/D, decomposition mechanisms are used to push the population to approach the Pareto optimal front (POF), while a set of uniformly distributed weight vectors are applied to maintain the diversity of the population. Penalty-based boundary intersection (PBI) is one of the approaches used frequently in decomposition. In PBI, the penalty factor plays a crucial role in balancing convergence and diversity. However, the traditional PBI approach adopts a fixed penalty value, which will significantly degrade the performance of MOEA/D on some MOPs with complicated POFs. This paper proposes an angle-based adaptive penalty (AAP) scheme for MOEA/D, called MOEA/D-AAP, which can dynamically adjust the penalty value for each weight vector during the evolutionary process. Six newly designed benchmark MOPs and an MOP in the wastewater treatment process are used to test the effectiveness of the proposed MOEA/D-AAP. Comparison experiments demonstrate that the AAP scheme can significantly improve the performance of MOEA/D

    Modified nusinersen intrathecal injection method: inclusion of a septal needle-free closed infusion connector

    Get PDF
    ObjectiveNusinersen, an extremely expensive biologic drug (around 100,000 US$ per dose) that needs to be administered intrathecally, is approved for the treatment of 5q-spinal muscular atrophy (SMA). Because of the low muscle tone of the back muscles of pediatric SMA patients, especially type 1 SMA patients, the safe, effective, and fast execution of sheath injection is needed. Therefore, a modified intrathecal injection method was developed accordingly. This paper aims to describe the applicability and safety of this modified method.MethodsThe modified intrathecal injection method (MIIM) mainly includes a septal needle-free closed infusion connector between the lumbar puncture needle and the syringe, besides the procedures of routine lumbar puncture. Its applicability and safety were evaluated through clinical observation.ResultsA total of 92 children with SMA have successfully received nusinersen treatment at our hospital using the modified method since 2019 without obvious adverse events related to the modified injection method. Based on the clinical feedback of operators, the advantages of the modified method include successfully injecting the total dose of nusinersen with constant injection rate and a more stable fixation of the puncture needle, as well as making the operator more relaxed. However, compared with the routine method, the procedure of the modified method has additional steps.ConclusionThe modified intrathecal injection method is an effective and safe method to inject nusinersen when weighing the pros and cons, and it may also be used for administering intrathecal injections of other expensive medicines or for patients with other strict requirements for intrathecal injection

    Characterization of feed efficiency-related key signatures molecular in different cattle breeds.

    No full text
    Feed efficiency is a major constraint in the beef industry and has a significant negative correlation with residual feed intake (RFI). RFI is widely used as a measure of feed efficiency in beef cattle and is independent of economic traits such as body weight and average daily gain. However, key traits with commonality or specificity among beef cattle breeds at the same level of RFI have not been reported. Accordingly, the present study hypothesized that signatures associated with feed efficiency would have commonality or specificity in the liver of cattle breeds at the same RFI level. By comparing and integrating liver transcriptome data, we investigated the critical signatures closely associated with RFI in beef cattle using weighted co-expression network analysis, consensus module analysis, functional enrichment analysis and protein network interaction analysis. The results showed that the consensus modules in Angus and Charolais cattle were negatively correlated, and four (turquoise, red, tan, yellow) were significantly positively correlated in Angus liver, while (turquoise, red) were significantly negatively correlated in Charolais liver. These consensus modules were found to be primarily involved in biological processes such as substance metabolism, energy metabolism and gene transcription, which may be one of the possible explanations for the difference in feed efficiency between the two beef breeds. This research also identified five key candidate genes, PLA2G12B, LCAT, MTTP, LCAT, ABCA1 and FADS1, which are closely associated with hepatic lipid metabolism. The present study has identified some modules, genes and pathways that may be the major contributors to the variation in feed efficiency among different cattle breeds, providing a new perspective on the molecular mechanisms of feed efficiency in beef cattle and a research basis for investigating molecular markers associated with feed efficiency in beef cattle

    Automatic Defect Identification Method for Magnetic Particle Inspection of Bearing Rings Based on Visual Characteristics and High-Level Features

    No full text
    Fluorescent magnetic particle inspection (MPI) is a conventional non-destructive testing process for railway bearing rings that still needs to be completed manually. Due to the complexity of bearing ring surfaces in inspection, automatic detection for bearing rings based on image processing is difficult to apply. Therefore, we proposed a bearing ring defect identification method based on visual characteristics and high-level features. Inspired by the mechanism of human visual perception, defects can be identified from the complex background conveniently by human eyes. According to the linear structure characteristics and greyscale distribution characteristics of cracks in the acquired images, we introduce the centerline extraction and Gaussian similarity measure to reduce background noise and obtain the crack candidate regions. Then, an improved MobileNetV3 is used to extract high-level features of the candidate regions and determine whether they are defective, which uses a new attention module, Coordinate Attention (CA), to substitute the Squeeze-and-Excitation (SE) attention to improve the performance. The experimental results show that the detection accuracy rate of the proposed method is 96.5%. Compared with traditional methods, the proposed method can efficiently extract crack defects in a complex textured background and shows high-quality performance in recall and precision

    An adaptive hybrid evolutionary immune multi-objective algorithm based on uniform distribution selection

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.In general, for the iteration process of an evolutionary algorithm (EA), there exists the problem of uneven distribution of individuals in the target space for both multi-objective and single-objective optimization problems. This uneven distribution significantly degrades the population diversity and convergence speed. This paper proposes an adaptive hybrid evolutionary immune algorithm based on a uniform distribution selection mechanism (AUDHEIA) for solving MOPs efficiently. In AUDHEIA, the individuals in the population are mapped to a hyperplane, which is correlated with the objective space and are clustered to increase the diversity of solutions. To improve the distribution of the solutions, the mapped hyperplane is evenly sectioned. With the constantly changing distribution during the iteration, a threshold as a standard for judging the distribution level is adjusted adaptively. When the threshold is not satisfied in the corresponding interval, the distribution enhancement module is activated. Then, the same number of individuals should be selected in each interval. However, sometimes, there are insufficient or no individuals in the interval during the iterative process. To obtain sufficient individuals, the limit optimization variation strategy of the best individual is adopted. Experiments show that this algorithm can escape from local optima and has a high convergence speed. Moreover, the distribution and convergence of this algorithm are superior to the peer algorithms tested in this paper

    Functional enrichment analysis of the significantly negatively correlated turquoise module in Angus and Charolais cattle.

    No full text
    The size of the circles represents the number of genes contained in the pathway; the color has no practical significance. The horizontal axis is "", which is 1.30 when padj = 0.05. The larger the padj, the larger the .</p

    The data analysis process.

    No full text
    Feed efficiency is a major constraint in the beef industry and has a significant negative correlation with residual feed intake (RFI). RFI is widely used as a measure of feed efficiency in beef cattle and is independent of economic traits such as body weight and average daily gain. However, key traits with commonality or specificity among beef cattle breeds at the same level of RFI have not been reported. Accordingly, the present study hypothesized that signatures associated with feed efficiency would have commonality or specificity in the liver of cattle breeds at the same RFI level. By comparing and integrating liver transcriptome data, we investigated the critical signatures closely associated with RFI in beef cattle using weighted co-expression network analysis, consensus module analysis, functional enrichment analysis and protein network interaction analysis. The results showed that the consensus modules in Angus and Charolais cattle were negatively correlated, and four (turquoise, red, tan, yellow) were significantly positively correlated in Angus liver, while (turquoise, red) were significantly negatively correlated in Charolais liver. These consensus modules were found to be primarily involved in biological processes such as substance metabolism, energy metabolism and gene transcription, which may be one of the possible explanations for the difference in feed efficiency between the two beef breeds. This research also identified five key candidate genes, PLA2G12B, LCAT, MTTP, LCAT, ABCA1 and FADS1, which are closely associated with hepatic lipid metabolism. The present study has identified some modules, genes and pathways that may be the major contributors to the variation in feed efficiency among different cattle breeds, providing a new perspective on the molecular mechanisms of feed efficiency in beef cattle and a research basis for investigating molecular markers associated with feed efficiency in beef cattle.</div

    Profile of gene expression in Charolais.

    No full text
    Feed efficiency is a major constraint in the beef industry and has a significant negative correlation with residual feed intake (RFI). RFI is widely used as a measure of feed efficiency in beef cattle and is independent of economic traits such as body weight and average daily gain. However, key traits with commonality or specificity among beef cattle breeds at the same level of RFI have not been reported. Accordingly, the present study hypothesized that signatures associated with feed efficiency would have commonality or specificity in the liver of cattle breeds at the same RFI level. By comparing and integrating liver transcriptome data, we investigated the critical signatures closely associated with RFI in beef cattle using weighted co-expression network analysis, consensus module analysis, functional enrichment analysis and protein network interaction analysis. The results showed that the consensus modules in Angus and Charolais cattle were negatively correlated, and four (turquoise, red, tan, yellow) were significantly positively correlated in Angus liver, while (turquoise, red) were significantly negatively correlated in Charolais liver. These consensus modules were found to be primarily involved in biological processes such as substance metabolism, energy metabolism and gene transcription, which may be one of the possible explanations for the difference in feed efficiency between the two beef breeds. This research also identified five key candidate genes, PLA2G12B, LCAT, MTTP, LCAT, ABCA1 and FADS1, which are closely associated with hepatic lipid metabolism. The present study has identified some modules, genes and pathways that may be the major contributors to the variation in feed efficiency among different cattle breeds, providing a new perspective on the molecular mechanisms of feed efficiency in beef cattle and a research basis for investigating molecular markers associated with feed efficiency in beef cattle.</div
    • …
    corecore